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Abstract: The unknown or unobservable risk factors in the survival analysis cause 

heterogeneity between individuals. Frailty models are used in the survival analysis 

to account for the unobserved heterogeneity in individual risks to disease and death. 

To analyze the bivariate data on related survival times, the shared frailty models 

were suggested. The most common shared frailty model is a model in which frailty 

act multiplicatively on the hazard function. In this paper, we introduce the shared 

inverse Gaussian frailty model with the reversed hazard rate and the generalized 

inverted exponential distribution and the generalized exponential distribution as 

baseline distributions. We introduce the Bayesian estimation procedure using 

Markov Chain Monte Carlo(MCMC) technique to estimate the parameters involved 

in the models. We present a simulation study to compare the true values of the 

parameters with the estimated values. Also we apply the proposed models to the 

Australian twin data set and a better model is suggested. 
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1. Introduction 

The statistical analysis of lifetime data plays an important role in medicine, epidemiology, 

biology, demography, economics, engineering and other fields. In the analysis of survival data, 

unknown or unobservable risk factors cause heterogeneity between individuals. This unobserved 

heterogeneity is known as frailty. Frailty is a common random effect that acts multiplicatively on 

the hazard rates of all subgroup members. The notion of frailty, introduced by Vaupel et al. (1979). 

The model assumes that the hazard function for lifetime T given an unobservable random variable, 

Z = z is h(t | z) = zh0(t); where h0(t) is the baseline hazard function. 

Clayton (1978) introduced the notion of shared relative-risk for the analysis of survival data. 

Clayton and Cuzick (1985) introduced a bivariate model with shared relative-risk and observed 
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covariates. A shared frailty model with a positive stable distribution of frailty was suggested by 

Hougaard (1987). 

Frailty model with gamma distribution has been studied in Vaupel et al. (1979) , Oakes 

(1982), Clayton and Cuzick (1985), and Andersen et al. (1993). The gamma distribution is the 

most commonly used frailty distribution, largely because of its mathematical convenience; see, 

for example, Hanagal (2006, 2007 & 2013). Another choice is the inverse Gaussian distribution. 

The inverse Gaussian makes the population homogeneous with time, whereas for gamma the 

relative heterogeneity is constant[ see Hougaard (1984)]. Duchateau and Janssen (2008) fit the 

inverse Gaussian (IG) frailty model with Weibull hazard to the udder quarter infection data. The 

IG distribution has a unimodal density and is a member of the exponential family. While its shape 

resembles that of other skewed density functions, such as lognormal and gamma, it provides 

much flexibility in modeling. Furthermore, there are many striking similarities between the 

statistics derived from this distribution and those of the normal; see Chhikara and Folks (1986). 

These properties make it potentially attractive for modeling purposes with survival data. The 

models derived above are bases on the assumption that a common random effect acts 

multiplicatively on the hazard rate function. 

In many practical situations reversed hazard rate (RHR) is more appropriate to analyze the 

survival data. Reversed hazard rate was proposed as a dual to the hazard rate by Barlow et al. 

(1963). Shaked and Shantikumar (1994) and Block et al. (1998) provided a general definition of 

reversed hazard rate (RHR) as, 

 

m(t) = lim
∆𝑡

𝑃(𝑡 −  4𝑡 <  𝑇 ≤  𝑡|𝑇 ≤  𝑡)/ ∆𝑡, t > 0.                        (1.1) 

 

 

The reversed hazard rate specifies the instantaneous rate of death or failure at time t, given 

that it failed before time t. Thus in a small interval, m(t)4t is the approximate probability of failure 

in the interval, given failure before the end of the interval (t − 4t,t]. In lifetime data analysis, the 

concepts of reversed hazard rate has potential application when the time elapsed since failure is 

a quantity of interest in order to predict the actual time of failure. The reversed hazard rate is 

more useful in estimating reliability function when the data are left censored or right truncated. 

Reversed hazard rate plays a vital role in the analysis of parallel systems, in reliability and 

survival analysis. For example, in certain systems or situations, sometimes the failure is 

prevented through numerous safety measures [see Gleeja, 2008]. Andersen et al. (1993), Lawless 

(2003) have discussed the use of reversed hazard rate for the analysis of left censored or right 

truncated data. 

Duffy et al. (1990) considered Australian twin data which consist of information about the 

age at appendectomy of monozygotic (MZ) and dizygotic (DZ) twins. There were some pairs 

with missing age at onset and those are the left censored observations. Duffy et al. (1990) 

excluded these left censored observations in the analysis. It is therefore, appropriate to model 

common random effect by including those left censored observations, which can be done by 
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developing frailty models using RHR. Accordingly, Sankaran and Gleeja (2011) introduced 

frailty as a common random effect that acts multiplicatively on reversed hazard rates, which is 

useful for the analysis of left censored data. In the present paper we introduce three parametric 

shared frailty model with inverse Gaussian frailty using reversed hazard rate. We use generalized 

exponential distributions and generalized inverted exponential distribution as baseline 

distribution and we compare these models for Australian twin data. 

The remainder of the paper is organized as follows. In Section 2, we introduce the general 

shared frailty model with inverse Gaussian frailty. In Section 3 in we discuss the baseline 

distribution and proposed models in Section 4. In Section 5, we discuss how the MCMC 

technique is used to estimate the parameters of the proposed models and different model selection 

criteria. Section 6 provides simulation study. In Section 7, we present analysis of Australian twin 

data set. Section 8 contains the major conclusions of the study. 

 

2. General Shared Frailty Model 

The shared frailty model is relevant to event time of related individuals, similar organs and 

repeated measurements. For example, the failure time of paired organs like kidneys, lungs, eyes, 

ears, dental implants, etc. are considered as event times. In this model individuals from a group 

share common risks. For the shared frailty model it is assumed that survival times are 

conditionally independent, for a given shared frailty. The shared frailty means the dependence 

between the survival times is only due to unobservable covariates or frailty. When there is no 

variability in the distribution of frailty variable Z, then Z has a degenerate distribution and when 

the distribution of Z is not degenerate, there is a positive dependence. 

 Suppose n individuals are observed for the study and let the bivariate random vector (T1j,T2j) 

represent the first and the second lifetimes of the jth individual (j = 1,2,3,...,n). Also suppose that 

X0,X1 and X2 are the observed covariates. Where X0 is the common covariate, X1 and X2 are 

the covariates corresponding to T1j and T2j respectively. Let a vector Xlj = (X1lj,...,Xkllj), ( l = 

0,1,2) for the jth individual where Xalj (a = 1,2,3,...,kl) represents the value of the ath observed 

covariate for the jth individual. We assume that the first and the second survival times for each 

individual share the same value of the covariates. Let Zj be shared frailty for the jth individual. 

Assuming that the frailties are acting multiplicatively on the baseline reversed hazard rate and 

both the survival times of individuals are conditionally independent for a given frailty, the 

conditional reversed hazard rate for the jth individual at the ith (i = 1,2) survival time tij for a 

given frailty Zj = zj has the form, 

                        (2.1) 

 

where m0i(tij) is the baseline reversed hazard at time tij and β is a vector of order k, 

of regression coefficients. The conditional cumulative reversed hazard rate for the jth individual at ith 

lifetime tij for a given frailty Zj = zj is, 
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                                    (2.2) 

where η0j = eX0jβ0, ηij = eXijβi, i= 1,2 and M0i(tij) is the cumulative baseline reversed hazard rate 

at time tij. The conditional distribution function for the jth individual at the ith lifetime tij for a 

given frailty Zj = zj is, 

                                     (2.3) 

Under the assumption of independence, the bivariate conditional distribution function for 

a given frailty Zj = zj at time t1j and t2j is, 

             (2.5) 

where LZj(.) is the Laplace transform of the frailty variable of Zj for the jth individual. 

Here onwards we represent F(t1j,t2j | Xj) as F(t1j,t2j). 

2.1. Shared Inverse Gaussian Frailty Model 

The gamma distribution is most commonly used frailty distribution because of its mathematical 

convenience. The inverse Gaussian makes the population homogeneous with time, whereas for 

gamma the relative heterogeneity is constant Hougaard (1984). Alternative to the gamma distribution 

Hougaard (1984) introduced the inverse Gaussian as a frailty distribution. The inverse Gaussian 

distribution have many similarities to standard Gaussian distribution (see Chikkara and Folks (1986)). 

Furthermore, it provides much flexibility in modeling, when early occurrences of failures are 

dominant in a life time distribution and its failure rate is expected to be non monotonic. In such 

situations the inverse Gaussian distribution might provide a suitable choice for the lifetime model. 
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Also inverse Gaussian is almost an increasing failure rate distribution when it is slightly skewed and 

hence is also applicable to describe lifetime distribution which is not dominated by early failures. 

Secondly, for the inverse Gaussian distribution the surviving population becomes more homogeneous 

with respect to time, where as for gamma distribution the relative heterogeneity is constant. The 

inverse Gaussian distribution has unimodal density and is the member of exponential family. While 

its shape resembles the other skewed density functions, such as log normal and gamma. These 

properties of inverse Gaussian distribution motivate us to use inverse Gaussian as frailty distribution. 

The inverse Gaussian distribution has a history dating back to 1915 when Schrodinger and 

Smoluchowski presented independent derivations of the density of the first passage time distribution 

of Brownian motion with positive drift. Villman et al., (1990) have studied the histomorphometrical 

analysis of the influence of soft diet on masticatory muscle development in the muscular dystrophic 

mouse. The muscle fibre size distributions were fitted by an inverse Gaussian law. Barndorff-Nielsen 

(1994) considers a finite tree whose edges are endowed with random resistances, and shows that, 

subject to suitable restrictions on the parameters, if the resistances are either inverse Gaussian or 

reciprocal inverse Gaussian random variables, then the overall resistance of the tree follows a 

reciprocal inverse Gaussian law. Gacula and Kubala (1975) have analyzed shelf life of several 

products using the IG law and found to be a good fit. For more real life applications see 

Seshadri(1999). 

Let a continuous random variable Z follows the inverse Gaussian distribution with parameters µ 

and θ then the density function of Z is 

            (2.6) 

and the Laplace transform is 

 .                               (2.7) 
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The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3θ. For identifiability, we 

assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density function 

and the Laplace transformation of the inverse Gaussian distribution reduces to 

                          (2.8) 

and the Laplace transform is 

    .                                  (2.9) 

with the variance of Z as θ. The frailty variable Z is degenerate at Z = 1 when θ tends to zero. 

Replacing the Laplace transform in equation (2.5), we get the unconditional bivariate distribution 

function for the jth individual as 

  . (2.10) 

where M01(t1j) and M02(t2j) are the cumulative baseline reversed hazard functions of the 

lifetime T1j and T2j respectively. 

The bivariate distribution in the presence of covariates, when the frailty variable is 

degenerate is given by 

                 (2.11) 

3. Baseline Distributions 

We present below three baseline distributions with the interesting properties. The goodness of 

fit based on Kolmogorov-Smirnov (K-S) statistic in Table 4 shows that these four baseline models 

fit well to the Australian data set. 

3.1. Generalized Exponential distribution 

The one parameter exponential distribution is one of the most widely used lifetime models in 

reliability and survival analysis because of its simple mathematical form and some interesting 

properties. Gupta and Kundu (1999) generalized this model by introducing a shape parameter, which 
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is known as the generalized exponential distribution. We have used the generalized exponential 

distribution as the baseline distribution. A continuous random variable T is said to follow the 

generalized exponential distribution if its distribution function and probability density function is, 

                  (3.1) 

and 

     (3.2) 

where λ and α are respectively scale and shape parameters of the distribution. The reversed hazard 

rate and the cumulative reversed hazard rate are respectively, 

        (3.3) 

           (3.4) 

For α = 1, the distribution reduces to one parameter exponential distribution. If α < 1 , f(x) decreases 

monotonically with x. If α > 1, f(x) attains a mode at x = (logα)/λ. When α > 1, the hazard function 

is an increasing function of time and for α < 1, hazard function is a decreasing function of time. 

Generalized exponential distribution can be used effectively in analyzing many life time data sets 

particularly in place of gamma and Weibull. For generalized exponential distribution, hazard rate 

increases from zero to a finite constant, when shape parameter α increases and hazard rate decreases 

from ∞ to a finite number when is less than one. A nearly constant rate after a certain time period 

implies that the occurrence of failure is purely random and is independent of past life; this is a 

property of the failure rate of an exponential distribution which has been extensively used in 

reliability studies. So we thought generalized exponential distribution as baseline distribution may 

gives better results comparable to Weibull distribution 
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3.2. Generalized inverted Exponential distribution 

Another modification to exponential distribution has been done by using its inverted version, known 

as the inverted exponential distribution (IED) and was studied by Lin et al. (1989). They obtained the 

maximum likelihood estimator, confidence limits and UMVUE for the parameter and the reliability 

function using complete samples. They also compared this model with that of inverted Gaussian and 

log-normal distributions based on a maintenance data set. The cumulative distribution function (cdf) 

of the generalized inverted exponential distribution (GIED) with shape parameter α and scale 

parameter λ is given by 

                    (3.5) 

        (3.6) 

where λ and α are respectively scale and shape parameters of the distribution. The reversed hazard 

rate and the cumulative reversed hazard rate are respectively, 

           (3.7) 

          (3.8) 

Several interesting properties of GIED have been studied in detail by Abouammoh and Alshingiti 

(2009) and Nadarajah and Kotz (2003). The hazard rate functions of GIED can be increasing, or 

decreasing but not constant depending on the value of the shape parameter. The hazard rate functions 

of GIED can be increasing, or decreasing but not constant depending on the value of the shape 

parameter. The GIED has a unimodal and right skewed density function for the shape parameter 

greater than 4. Moreover, they observed that in many situations, the GIED provides a better fit than 
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gamma, Weibull, generalized exponential and inverted exponential distributions (see Abouammoh 

and Alshingiti (2009)). Recently, Krishna and Kumar (2013) studied reliability estimation in the 

context of this distribution under progressively type II censored sample and Deya and Pradhanb (2014) 

discuss Bayes estimates are evaluated by applying Lindleys approximation method, the importance 

sampling procedure and MetropolisHastings algorithm. The importance sampling technique is used 

to compute the highest posterior density credible intervals. Finally, they discuss a method of obtaining 

the optimum hybrid censoring scheme. 

4. Proposed Models  

4.1. Parametric Models 

Substituting the cumulative reversed hazard function for the generalized exponential and the 

generalized inverted exponential as baseline distributions in equation (2.10) and equation (2.11), 

we get the unconditional bivariate distribution functions at time t1j > 0 and t2j > 0 as, 

 

 .     (4.1) 

 

 

Here onwards we call equation (4.1), (4.2), (4.3) and (4.4) as Model I, Model II, Model III and 

Model IV respectively. Model I and Model III are inverse Gaussian frailty models with baseline 

distributions as generalized exponential and generalized inverted exponential respectively and Mode-

II and Model IV are the corresponding baseline distributions without frailty models. 
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4.2. Semiparametric Models 

The semi parametric model with frailty is given by 

           (4.7) 

and the semi parametric model without frailty is given by 

           (4.8) 

for more details see Hanagal(2011). Here onwards we call Eqns (4.5) and (4.6) as Model V and Model 

VI which correspond to the inverse Gaussian frailty with semiparametric model and semiparametric 

model without frailty respectively. 

5. Likelihood Specification and Bayesian Estimation of Parameters 

Suppose there are n individuals under study, whose first and second observed failure times 

are represented by (t1j,t2j). Let c1j and c2j be the observed censoring times for the jth individual 

(j = 1,2,3,...,n) for the first and the second recurrence times respectively. We use the left censoring 

scheme. Also we assume independence between the censoring scheme and the lifetimes of 

individuals. 

The contribution of the bivariate lifetime random variable of the jth individual in likelihood 

function is given by, 

 
and likelihood function is, 

 

)          (5.1) 
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where θ, ψ and β are respectively the frailty parameter, the vector of baseline parameters 

and the vector of regression coefficients. The counts n1,n2,n3 and n4 be the numbers of individuals for 

which first and second failure times (t1j,t2j) lie in the ranges t1j > c1j,t2j > c2j; t1j > c1j,t2j < c2j; t1j < 

c1j,t2j > c2j and t1j < c1j,t2j < c2j respectively and let for inverse Gaussian frailty, 

  (5.2) 

where φ1(aj,bj) = 1+θ[1−ln(F(aj,bj))] and φ2(aj,bj) = 1+2θη0(M01(aj)η1+M02(bj)η2). 

Substituting the reversed hazard functions m01(t1j), m02(t2j), the distribution function F(t1j,t2j) 

and the cumulative reversed hazard functions M01(t1j) and M02(t2j) for the baseline distributions, 

we get the likelihood function given by Eq. (5.1). Similarly we get the likelihood function for 

without frailty model. 

Unfortunately computing the maximum likelihood estimators (MLEs) involves solving a 7 to 

8 dimensional optimization problem for all models. There is problem of convergence of the 

estimates in the Newton-Raphson iterative procedure because we are estimating parameters 

simultaneously. As the method of maximum likelihood fails to estimate the parameters due to 

convergence problem, we use Bayesian approach. For all six models we use the Bayesian 

approach. The traditional maximum likelihood approach to estimation is commonly used in 

survival analysis, but it can encounter difficulties with frailty models. Moreover, standard 

maximum likelihood based inference methods may not be suitable for small sample sizes or 

situations in which there is heavy censoring (see Kheiri et al. (2007)). Thus, in our problem a 

Bayesian approach, which does not suffer from these difficulties, is a natural one, even though it 

is relatively computationally intensive. 

Several authors have discussed the Bayesian approach for the estimation of parameters of the 

frailty models. Some of them are, Ibrahim et al. (2001) and references their in. Santos and Achcar 

(2010) considered the parametric models with Weibull and the generalized gamma distribution 

as the baseline distribution and gamma and log-normal as the frailty distributions. Ibrahim et al. 

(2001) and references therein considered the Weibull model and the piecewise exponential model 

with the gamma frailty. They also considered the positive stable frailty models. 

The joint posterior density function of the parameters for given failure times in the proposed 

frailty models is obtained as, 
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where gi(.) (i = 1,2,··· ,5) indicates the prior density function with known hyper parameters 

of corresponding argument for the baseline parameters and the frailty variance; pi(.) is the prior 

density function for the regression coefficient βi and the likelihood function L(.) is given by 

equation (5.1). Here we assume that all the parameters are independently distributed. In the same 

way one can write the joint posterior density function of the parameters in the models without 

frailty. 

To estimate the parameters of the model, we used the Metropolis-Hastings algorithm and 

Gibbs sampler. We monitored the convergence of a Markov chain to a stationary distribution by 

the Gelman-Rubin convergence statistic and the Geweke test. The trace plots, the coupling from 

the past plots and the sample autocorrelation plots are used to check the behaviour of the chain, 

to decide the burn-in period and the autocorrelation lag respectively. 

The algorithm consists in successively obtaining a sample from the conditional distribution 

of each of the parameter given all other parameters of the model. These distributions are known 

as full conditional distributions. In our case full conditional distributions are not easy to integrate 

out. So full conditional distributions are obtained by considering that they are proportional to the 

joint distribution of the parameters of the model. 

We have full conditional distribution of the parameter λ1 as, 

 

π1(λ1 | α1,γ1,λ2,α2,γ2,θ,β) ∝ L(λ1,α1,γ1,λ2,α2,γ2,θ,β) · g1(λ1)               (5.3) 

 

Similarly full conditional distributions for other parameters can be obtained even if 

parameters are less. 

In order to compare the proposed models, we use the Bayesian Information Criteria (BIC), 

the Akaike Information Criteria (AIC), the Deviance Information Criteria ( DIC ) and the Bayes 

factor. The BIC was introduced by Schwarz(1978) and the BIC is defined as, 

 

                                             (5.4) 

where p represents the number of parameters of the model and n represents the number of 

data points. D(Θˆ) represents an estimate of the deviance evaluated at the posterior mean 

Θˆ = E(Θ | data). The deviance is defined by, D(Θ) = −2 · logL(Θ), where Θ is a vector of 

the unknown parameters of the model and L(Θ) is the likelihood function of the model. AIC 

was introduced by Akaike(1973) and AIC is defined as, 

 

                                                      (5.5) 

 

DIC, a generalization of AIC was introduced by Spiegelhalter et al.(2002) and is defined as, 
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                                             (5.6) 

 

 

where pD is the difference between the posterior mean of the deviance and the deviance of the 

posterior mean of the parameters of interest, that is, pD = D - D(Θˆ) ,where D = E(D(Θ) | data). 

The Bayesian model examination for adequacy and model comparison can be proceeds by the 

predictive distribution. Let y = {y1,y2,...,yn} be a set of observations, where n is total number of 

observations and 𝑦𝑜𝑏𝑠  denotes realization of y. The posterior predictive density π(y | 𝑦𝑜𝑏𝑠 ) is the 

predictive density of a new independent set of observations  under the model, given the actual set of 

observations. By marginalizing π(y | 𝑦𝑜𝑏𝑠 ), we obtain the posterior predictive density of a single 

observation yr,r = 1,2,...,n as follows, 

                    (5.7) 

A simple checking for assessment of model is predictive interval. Suppose we generate a 

sample yr1,yr2,...,yrn from the predictive density (5.7) for the rth observation and create the 

100(1 − α)% equal tailed credible interval also known as the predictive interval, then the model 

under consideration would be an adequate model for data if 100(1 − α)% of the yr,obs to fall in 

their respective interval. 

To draw a random sample from the predictive density (5.7), suppose we have 𝜃𝑗
∗; (𝑗 =

1,2, … . , n)n samples from the posterior density π(θ | y) possibly using one of the MCMC methods. 

Then a random sample  drawn from ) is a sample from the predictive density (5.7), since 

for given parameters θ, if observations are conditionally independent then π(yr | y,θ) = 

 π(yr | θ). 

Another approach for model selection is based on cross-validation predictive density.The 

cross-validation predictive densities are the set   where Y(𝑟) denotes 

all elements of data set y except observation y𝑟 and 

               (5.8) 

f(yr,obs | Y (r),obs) is popularly known as the conditional predictive ordinate (CPO). The smaller values 

of CPO does not support the model, so we prefer a model for which CPO values are higher than 

others. We can compare more than one models using CPO’s. We plot CPO’s versus r for different 

models in a single graph and compare the models visually. If we plot difference of CPO values for 

the models A and B, i.e. CPOA − CPOB then negative differences favour model B where positive 

difference favour model A. The larger the positive or negative difference better the model A or B. 
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Sometimes CPO values are quite close to each other so that difference may be clustered at zero and 

plot can not be distinguishable. To overcome this situation one can use log of CPO values to plot. For 

the cross-validation predictive density, in general we can write, 

 

So an immediate Monte Carlo estimate of CPO, is given by, 

                                                          (5.9) 

which is the harmonic mean of the conditional density function of yr evaluated at the posterior 

sample values. See Gelfand (1996) for more details. 

Gelfand and Ghosh (1998) have proposed a model choice criterion by studying utility functions. 

They consider loss functions which reward an action for its closeness to the predictive value and 

penalizes the action if it is too far from the observed value. The criterion is then obtained by 

minimizing this posterior predictive loss. As they claim, the criterion emerges approximately as a 

form, partitioned into a goodness-of-fit term and a penalty term for a wide range of models. With 

squared error loss the criterion is: 

                         (5.10) 

where µr and σr
2 are the Monte Carlo estimates of the posterior predictive mean and the variance of yr 

under the density (5.7) based on the sample yr
j j = 1,2,...,n and ω > 0 is constant. The first term is a 

penalty term which penalizes both under-fitted and overfitted models, since the predictive variances 

in such cases will tend to be larger. The second term without the factor involving ω is a goodness-of-

fit measure. Model selection using is usually not sensitive to ω. For censored data, the criterion 

must be modified because yr,obs is not available for censored cases. The modified criterion is, 
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                        (5.11) 

 

where υr = yr,obs if the rth observation is a failure time and υr = max(µr,cr) if the rth observation is 

censored at cr. A model with minimum value of Dω is selected as the best model among all the models 

considered. 

The Bayes factor Bjk for a model Mj against Mk for a given data D = (t1j,t2j) ; (j = 1,2,3,...,n) is 

                                                     (5.12) 

where P(D|Mk) = RS P(D|Mk)π(θk|Mk)dθk; (k = 1,2,3,...,m) where θk is the vector of unknown parameters 

of model Mk, π(θk|Mk) is the prior density and S is the support of the parameter θk. Here m represents 

the model number. Raftery (1994), following Jeffreys (1961), proposes the rules of thumb for 

interpreting twice the logarithm of the Bayes factor. For two models of substantive interest, Mj and 

Mk , twice the log of the Bayes factor is approximately equal to the difference in their BIC 

approximations. 

To compute Bayes factor we need to obtain Ik = P(D|Mk), we consider one of the approach given 

in Kass and Raftery (1995), a MCMC estimate of Ik is given by, 

                            (5.13) 

which is harmonic mean of the likelihood values. Here N represents the posterior sample size and 

θ(i)(i = 1,2,...N) is the sample from the prior distribution. 

6. Simulation Study 

To evaluate the performance of the Bayesian estimation procedure we carry out a simulation 

study. For the simulation purpose we have considered only one covariate X0 which we assume 

to follow binomial distribution for Model I and Model III. The frailty variable Z is assumed to 

have inverse Gaussian distribution for all models with known variance. Lifetimes (T1j,T2j) for 
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the jth individual are conditionally independent for a given frailty Zj = zj. We assume that Tij(i 

= 1,2.;j = 1,2,··· ,n) follows one of the baseline distributions given above. 

As the Bayesian methods are time consuming, we generate only fifty pairs of lifetimes. 

According to the assumption, for a given frailty (Z), lifetimes of individuals are independent. 

Thus the conditional distribution function for an individual for given a frailty, Z = z and a 

covariate X0 at time t > 0 is, 

 
where η = eX0β0. 

For Model-I, equating F(t) = ezηαln(1−e−λt) = (1 − e−λt)zηα to a random number say u (0 < u < 1), we get, 

                                              (6.1) 

where z is the inverse Gaussian frailty. 

For Model-III, equating   to a random 

number say u (0 < u < 1), we get, 

                                           (6.2) 

where z is the inverse Gaussian frailty. 

Samples are generated using the following procedure; 

1. Generate 50 covariate values for X0 from the binomial distribution for all models. 

2. Compute η = eX0β0 with the regression coefficient ( known ). 

3. Generate a sample of size 50 for the frailty variable Z from the inverse Gaussian distribution 

with θ = 2.0. 

4. Generate 50 pairs of lifetimes (t1j,t2j) for given frailty Z using the following generators, For 

Model-I, 
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For Model-III, 

 

           

where zj is the inverse Gaussian frailty. For Model-I and Model-III, u1 and u2 are the random 

variables having U(0,1) distribution and α1 and λ1 are parameters of the baseline distribution 

for the first survival time and α2 and λ2 and are that of the second survival time. 

5. Generate the censoring times (c1j and c2j). For Model I, from the exponential distribution with 

the parameter 0.1 each and for Model III, from the exponential distribution with the parameter 

0.2 each. 

6. Observe the ith survival time  ) and the censoring indicator δij for the jth 

individual (i = 1,2 and j = 1,2,...,50), where 

 

Thus we have data consisting of 50 pairs of survival times ( ) and the censoring 

indicators δij. 

A widely used prior for the frailty parameter θ is the G(0.0001,0.0001). In addition, we assume 

that the prior for the regression coefficient is N(0,1000). Similar types of the prior distributions are 

used in Ibrahim et al. (2001), Sahu et al. (1997) and Santos and Achcar (2010). We also employ the 
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same non informative prior for the frailty parameter θ and the regression coefficients β. Since we do 

not have any prior information about the baseline parameters, λ1,α1,λ2 and α2, the prior distributions 

are assumed to be flat. We consider two different non-informative prior distributions for the baseline 

parameters, one is G(a1,a2) and another is U(b1,b2). All the hyper-parameters a1,a2,b1 and b2 are 

known. Here G(a,b) is a gamma distribution with the shape parameter a and the scale parameter b 

and U(b1,b2) represents the uniform distribution over the interval b1 to b2. We only compare the 

comparison of this model with proposed frailty models. For Model I, we set α1 = 20.0,λ1 = 0.05,γ1 

= 1.20,α2 = 20.0,λ2 = 0.05,γ2 = 1.20,θ = 2.0 and β = 0.80 and X ∼ Binomial(1,.5), censoring 

distributions as the exponential distributions with the parameter 1.0 each. For Model III, we set λ1 = 

50,α1 = 20,λ2 = 50,α2 = 20,θ = 2.0 and β = 0.50 and X ∼ Binomial(1,.45), censoring distributions as 

the exponential distributions with the parameter 2.9 each. For Model V, We assume the value of the 

hyper-parameters as a1 = 1,a2 = 0.0001,b1 = 0 and b2 = 100. 

We run two parallel chains for all models using two sets of the prior distributions with the 

different starting points using the Metropolis-Hastings algorithm and the Gibbs sampler based on 

normal transition kernels. We iterate both the chains for 100000 times. There is no effect of the prior 

distribution on the posterior summaries because the estimates of the parameters are nearly the same 

and the convergence rates of the Gibbs sampler for both the prior sets are almost the same. Also for 

both the chains the results were somewhat similar. For all models, the trace plots, the coupling from 

the past plots, the running mean plots and the sample autocorrelation plots for the simulation study 

are not provided due to lack of space. Tables 1 and 2 present the estimates, the credible intervals, the 

Geweke test (Geweke 1992) and the Gelman-Rubin Statistics (Gelman and Rubin, 1992) for all the 

parameters of the Model I and Model III respectively based on the simulation study. 

Estimated values of the parameters are close the true values and the bias for the estimated values 

are small. Standard errors for the estimated values are quit small. The Gelman-Rubin convergence 

statistic values are nearly equal to one and also the Geweke test values are quite small and the 

corresponding p-values are large enough to say that the chain attains stationary distribution. 

Simulated values of the parameters have the autocorrelation of lag k, so every kth iteration is selected 

as a sample from the posterior distribution. 

7. Australian Twin Data 



 
 David D. Hanagal, Arvind Pandey                                                                          587 

 

Now we apply the all eight models to the Australian twin data given in Duffy et a1. (1990). 

The data consists of six zygote categories. We consider the subset of the data with zygote 

category 2 . The data consists of males gender only and consist if 567 pair of twins with 23 and 

17 censored in twin 1 and twin 2 respectively. An individuals having age at onset less than 11 

are considered as left censored observations. The data has information on the age at 

appendectomy of twins. The genetic factor or environmental factor involved in the risk of 

appendectomy is the frailty variable. Here there is a common covariate age for both T1 and T2 

and one covariate each for T1 and T2, i.e., presence or absence of appendectomy. To check 

goodness of fit of Australian twin data set, We obtain Kolmogorov-Smirnov (K-S) statistics and 

their p values for T1 and T2 separately for two frailty models Model I and Model III. For all the 

models p values of K-S statistics are provided in Table 3. These p values of K-S test are quite 

high. We can say that there is no statistical evidence to the reject the hypothesis that data are from 

these models for marginal distributions and assume that they also fit for bivariate case. Figure 1 

shows the parametric plot with semi parametric plot for all parametric models with frailty. 

As in the case of simulation, here also we assume the same set of prior distributions. We run 

two parallel chains for all models using two sets of prior distributions with the different starting 

points using the Metropolis-Hastings algorithm and the Gibbs sampler based on normal transition 

kernels. We iterate both the chains for 100000 times. As seen in simulation study, here also we 

got nearly same estimates of parameters for both the set of priors, so estimates are not dependent 

on the different prior distributions. Convergence rates of Gibbs sampler for both the prior sets 

are almost the same. Also both the chains show somewhat similar results, so we present here the 

analysis for only one chain with G(1,0.0001) as prior for the baseline parameters and 

G(0.0001,0.0001) as the prior for the frailty parameter θ. Due to lack of space we are presenting 

only for Model I ( the trace plots, the coupling from the past plots and the autocorrelation plots 

after thinning ) for the parameters. The trace plots for all the parameters shows zigzag pattern 

which indicates that parameters move and mix more freely, as shown in Figure 2. Thus, it seems 

that the Markov chain has reached the stationary state. Burn in period is decided by using 

coupling from the past plot (see Figure 3). However, a sequence of draws after burn-in period 

may have autocorrelation. Because of autocorrelation consecutive draws may not be random, but 

values at widely separated time points are approximately independent. So, a pseudo random 

sample from the posterior distribution can be found by taking values from a single run of the 

Markov chain at widely spaced time points (autocorrelation lag) after burn-in period. The 

autocorrelation of the parameters become almost negligible after the certain lag. ACF plot after 

thinning show that observations are independent, as shown in Figure 4. Thus, our diagnostic plots 

suggest that the MCMC chains are mixing very well. The Gelman-Rubin convergence statistic 

values are nearly equal to one and the Geweke test statistic values are quite small and the 

corresponding p-values are large enough to say the chains attains stationary distribution. 

The posterior mean and standard error with 95% credible intervals for the baseline parameters, 

the frailty parameter and the regression coefficients are presented in Tables 49. The posterior 

summery of the Model I to Model VI are given in Tables 4 to 9. Tables 4 to 9 present the estimates, 

the credible intervals, the Geweke test and the Gelman-Rubin statistics for all the parameters of 
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the Model I to Model VI respectively. To compare six models, we first use AIC, BIC and DIC 

values which are given in Table 10 and Bayes factor in Table 11. For Model I and Model III the 

estimates of the shared frailty parameter, θ are respectively 318.04 and 3.251. This shows that 

there is a heterogeneity between the pairs of twins. From Table 10 and Table 11, we observe that 

parametric models are fit better than semi-parametric models based on AIC, BIC, DIC and Baye’s 

factor. We observe that parametric Bayes factor for Model I with Model II is 561.55 , for Model 

III and Model IV is 130.238. This shows that the parametric frailty models are better than 

parametric without frailty models. Model I is better than Model III. This is also a Bayesian test 

based on Bayes factor for testing θ = 0 against θ > 0 and which supports the alternative hypothesis, 

i.e., models with frailty fit better. The credible interval of the regression coefficient β0 does not 

contains zero for Model II and Model III. The credible interval of the regression coefficient β1 

contains zero for all models. The credible interval of the regression coefficient β2 contains zero 

for all six models. Hence age is the significant covariate for Model II and Model III. The 

convergence rate of the Gibbs sampling algorithm does not depend on these choices of the prior 

distributions in our proposed model for Australian twin data. The Geweke test values are near to 

zero and the corresponding p-values are quite high and the Gelman-Rubin Statistics for all the 

parameters of all models based on data are very close to one. 

The AIC, BIC and DIC values for Model I is least among all six models. On the basis of AIC, 

BIC and DIC values, the parametric models are better than semi-parametric models. On the basis 

of AIC, BIC and DIC values, Model I is the best among all six models. Similarly the Bayes 

factors show that models with frailty (Model I and Model III) are better than the models without 

frailty (Model II and Model IV ) and Model I is the best and the frailty is significant. To check 

the adequacy of the Model I and Model III, we have constructed 99%,95%,90%,75% and 50% 

equal tailed predictive intervals of the generated random sample from the predictive distribution 

and counted the total number of intervals in which rth observation falls in their respective 

intervals. Details are given in Table 12. Table 12 shows that these two models are adequate for 

the Australian Twin Data. 

Another diagnostic we now use is the CPO plot. We have plotted difference of log of 

CPO values for pair of models. Figure 5 represents the plot. In Figure 5 consider Model I 

with Model III which shows that Model I is better than Model III. 

Finally, the values relating to the model choice criteria Dω (Eq. 5.7) for Model I and Model 

III are shown in Table 13. The first and second columns of the Table 13 give the penalty term 

and the goodness of fit term, next four columns give Dω values for different values of ω = 1,5,10 

and ∞. Penalty term and goodness of fit term are minimum for Model I, also for all the values of 

w Dω is minimum for Model I, so this criteria also suggest Model I, the inverse Gaussian frailty 

with the generalized exponential is best model. 
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8. Conclusion 

 

Our main aim of the study is to examine the role of the bivariate frailty model based on the 

reversed hazard rate in survival studies. For this we used the inverse Gaussian frailty with two 

baseline distribution (the generalized exponential and the generalized inverted exponential) and 

these models are compared with their baseline models based on reversed hazard rate. We also 

compare the parametric models with the semi-parametric models. We found that the parametric 

models are better than the semi-parametric models. We also found that the shared frailty models 

are better models as compared to their baseline models on the basis of AIC, BIC and DIC values 

for Australian twin data set. Bayes factor also supports the shared frailty models. 

Initially we thought to use the method of maximum likelihood to estimate the parameters but 

likelihood equations do not converge and the method of maximum likelihood fails to estimate 

the parameters so we used the Bayesian approach. In this study, the model is specified in a 

Bayesian framework and estimated with the MCMC algorithms. We have discussed the Bayesian 

estimation procedure including Gibbs sampling for computing the estimation of the unknown 

parameters by simulating samples of size 50. We have clearly written the steps involved in the 

iteration procedure. The entire estimation procedure using the Bayesian approach took large 

amount of computational time. The estimates of the parameters are not dependent on the different 

prior distributions. 

Two different chains were run for the proposed models from different starting points using 

the Metropolis-Hastings algorithm within Gibbs sampler. We have provided 100,000 iterations 

to perform the simulation study. Estimates were calculated after discarding a burn-in interval for 

each chain. Trace plots for all the parameters shows zigzag pattern which indicates that 

parameters move freely. The quality of convergence was checked by Gelman-Rubin statistics 

(see Brooks and Gelman, 1998). The values of the Gelman-Rubin statistics in this case are quite 

close to one and also the Geweke test values are small with large p-values. Thus the sample can 

be considered to have arisen from stationary distribution and descriptive statistics can be seen as 

valid estimates of unknown parameters. The simulation results indicate that the performance of 

the Bayesian estimation method is quite satisfactory. Bayes factor is used to test the frailty 

parameter θ = 0 and it is observed that the frailty parameter is highly significant in all frailty 

models. From Table 10 it is clear that the models with frailty fit better than without frailty models 

and Model 

I is best among the all six models. The covariate age is the only significant covariate for 

Model II and Model III. 

The choice of the best model for Australian twin data is based on AIC, BIC, DIC and Bayes 

factor values. We found that Model I is a better Model on the basis of AIC, BIC, 

DIC and Bayes factor values. The age is the only significant covariate for Model I and Model 

III. Shared frailty models(Model I and Model III) are better than their baseline model. Also Model 

I is better than Model III. On the basis of AIC, BIC, DIC and Bayes factor Model I is the best as 

compared other proposed models considered in this paper. On the basis of CPO plot and Eq (5.7) 

support the model I. Also shows that Model I is better than Model III. Also parametric models 
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are better than semi parametric models. By referring all the above analysis now we are in a 

position to say that, shared inverse Gaussian frailty model based on reversed hazard rate with the 

generalized exponential distribution as baseline is more suitable model for Australian twin data 

set, with left censored observations. The methods discussed in this paper may be extended into 

other frailty models and correlated frailty models with different base line distributions, using the 

Bayesian approach, provided the models fit to the data. 
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Appendix : Summary Tables and Figures. 
 
Table 1: Baseline Distribution Generalized Exponential Distribution with Inverse Gaussian Frailty (Simulation 

for Model I) 

 

Table 2: Baseline Distribution Inverted Generalized Exponential Distribution with Inverse Gaussian Frailty 

(Simulation for Model III) 
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Table 3: p-values of K-S statistics for goodness of fit test for Australian twin data set 

 

 

 

 

Table 4: Posterior summary for Australian twin data set Model I 

 

Table 5: Posterior summary for Australian twin data set Model II 
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Table 6: Posterior summary for Australian twin data set Model III 
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Table 7: Posterior summary for Australian twin data set Model IV 

 

Table 8: Posterior summary for Australian twin data set Model V 

 

Table 9: Posterior summary for Australian twin data set Model VI 

 

Table 10: AIC, BIC and DIC Comparison 
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Table 11: Bayes Factor for six models 

 

Table 12: Predictive interval for frailty models. 

 

 

Table 13: Model selection criteria (5.7) ∗ 10−3 for testing frailty θ 
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Figure 1: Survival function plots for (K-M survival and parametric survival). 
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Figure 2: Trace plots for Model I 
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Figure 4: ACF after thinning plot for Model I 
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